Query Management Facility

Developing QMF Applications

Version 7 Release 2

SC27-0718-01

Query Management Facility

Developing QMF Applications

Version 7 Release 2

SC27-0718-01

Note!
Before using this information and the product it supports, be sure to read the general information under

IQ lix E_“Naot 7 223

Second Edition (March 2002)

This edition applies to Query Management Facility, a feature of Version 7 Release 1 of DB2 Universal Database Server
for OS/390 (DB2 UDB for OS/390), 5675-DB2, and of Query Management Facility, a feature of Version 7 Release 1 of
DATABASE 2 Server for VM and VSE (DB2 for VM and VSE), 5697-F42, and to all subsequent releases and
modifications until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct
editions.

This edition replaces and makes obsolete the previous edition, SC27-0718-00.

The technical changes for this edition are indicated by a vertical bar to the left of a change. A vertical bar to the left of
figure caption indicates that the figure has changed. Editorial changes that have no technical significance are not
noted.

© Copyright International Business Machines Corporation 1983, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
The QMF Library

About This Book .

How to use this book. . .
What you should know before you begm .
How to send your comments .

How to order QMF books .

Chapter 1. QMF Application Development
Overview . . .
What Is application development in QMF7 .
How can the end users use your application?
What QMF applrcatlon development tools are
available? . . o

Chapter 2. Using Procedures as
Applications .

Knowing when not to use Procedures
Initial procedures

Using QMF CONNECT w1th1n a procedure
Substitution variables in procedures .
Using REXX variables in procedures with
logic .

Passing arguments to a procedure w1th loglc
Using REXX error-handling statements in
procedures with logic . .
Calling REXX programs from a procedure
with logic. oo

Chapter 3. The Callable Interface

What is the Callable Interface? .

Defining the Interface Communications Area
(DSQCOMM)

Return Codes

Commands for using the callable 1nterface
Running your callable interface application
Using the callable interface from within QMF
Error handling . . .
Running callable 1nterface programs under
CICS

Chapter 4. Using the Command Interface
for Applications

© Copyright IBM Corp. 1983, 2002

O O N NN

. Vii
. Vil
. il
. viii

_ =

12

. 29

Writing a program that uses the command
interface: An example . .o
Invoking the command interface .
The END command .o .
Using variables in the command 1nterface .
Command interface return codes .

Chapter 5. ADDRESS QRW: Using the QMF
Command Environment .o

Chapter 6. Writing QMF Applications that
Use ISPF. .
Starting and running QMF from an ISPF
application .
Running queries that contaln Varlables .
Invoking a program from a QMF procedure
with logic under ISPF.

Using ISPF commands from a procedure wrth
logic . .

Callable 1nterface consrderatrons .

Using the EDIT command with ISPF.

Using ISPF to debug applications .

Chapter 7. Writing Bilingual Applications
Creating bilingual objects for your
applications . .
Using the command language Varlable .
Using an initial Procedure in a bilingual
application .

Using English commands

Multilingual environments .

QMEF session environments .

Creating translatable applications .

Chapter 8. QMF Commands in Applications
CONNECT
END

EXIT

GET GLOBAL

INTERACT

MESSAGE

SET GLOBAL

START . Lo

Using command synonyms .

. 30
.31
.31
. 32
. 33

. 37

. 39

. 39
. 40

.41

.41
.42
.42
.43

45

. 45
. 46

. 47
. 47
. 48
. 48
. 50

51

. 51
. 53
. 55
. 56
. 57
. 60
. 62
. 66
.73

iii

Chapter 9. Importing and Exporting QMF
Objects

What you can do w1th an exported f11e data
set, or CICS data queue . .
Exporting versus saving data

Data and table objects.

Procedures and SQL queries

Chart objects .

Encoded objects. .

Prompted query objects .

Form objects .

Report objects .

QBE queries.

Specifications for externahzed QMF ob]ects
Rules and considerations when using CICS
queues

Chapter 10. Debugging Your QMF
Applications . .
Debugging your callable mterface
applications.

Debugging errors on the START and other
OMF commands . L

Appendix A. Sample Code for Callable
Interface Languages .
Assembler language interface .

C Language Interface

COBOL language interface .

FORTRAN language interface.

PL/I language interface.

REXX language interface

Appendix B. Export/Import Formats .
QMF format for data. .

Table and field numbers for the prompted
query object.

Table and field numbers for the form ob]ect
Table and field numbers for the report object
HTML tags used in QMF reports.

Appendix C. Integrated Exchange Format
(IXF) .
Header record (H)

Table record (T)

Column record (C)

Data record (D)

Column data format .

Examples of IXF .

iv QMF: Developing QMF Applications

. 77

. 78
.79
.79
. 83
. 84
. 84
.99

. 102
111
. 119

120

. 121

. 123

. 123

. 126

. 127
. 127
. 150
. 167
. 184
. 200
. 216

. 227
. 227

. 230

232
238

. 240

. 241
. 242
. 242
. 243
. 244
. 244
. 251

Appendix D. Product Interface Macros

Appendix E. QMF Global Variable Tables
DSQ Global Variables for Profile-Related
State Information .

DSQ Global Variables for State Informatlon
Not Related to the Profile .

DSQ Global Variables Associated w1th CICS
DSQ Global Variables Related to a Message
Produced by the Previous Command

DSQ Global Variables Associated with Table
Editor. . .
DSQ Global Varlables That Control How
Information is Displayed on the Screen
DSQ Global Variables That Control How
Commands and Procedures Are Executed.
DSQ Global Variables That Show Results of
CONVERT QUERY . .

DSQ Global Variables That Show RUN
QUERY Error Message Information .

Appendix F. Notices
Trademarks .

Glossary of Terms and Acronyms

Bibliography .

APPC Publications

CICS Publications.

COBOL Publications .
DATABASE 2 Publications .
DCEF Publications .

DRDA Publications .

DXT Publications .
Graphical Data Display Manager (GDDM)
Publications.

HLASM Pubhcatrons
ISPF/PDF Publications .
0OS/390 Publications .

PL/I Publications .

REXX Publications
ServiceLink Publications
VM Publications .

VSE Publications .

Index

255

257

. 257

. 259

262

. 263

. 264

. 266

. 269

. 272

. 272

. 273
. 276

. 277

. 291
. 291
. 291
. 292
. 292
. 293
. 293
. 293

. 293
. 293
. 294
. 294
. 295
. 295
. 295
. 295
. 295

. 297

vi QMFE Developing QMF Applications

About This Book

This book is intended to help application programmers write applications that
use IBM® Query Management Facility (QMF).

How to use this book

The tasks in this book outline the design decisions that you need to make
before you write a QMF application, show you different programming
techniques, and provide some examples that highlight application
programming using QMFE. The appendixes provide reference information
useful for application development.

This book serves 0S/390%°, VM® and VSE™ customers. Differences among
systems, or among CICS®, CMS, TSO and native OS/390 batch , are
highlighted when necessary. Otherwise, you can assume that QMF works the
same in each system.

What you should know before you begin

QMF applications let you work with QMF objects and perform QMF functions
from within an application program written in one of the languages QMF
supports. This book assumes you already know how to write queries and
procedures, format reports, and modify the database.

To write QMF applications using QMF command or callable interfaces, you
might need to know one of the following programming languages:

Callable Interface
Command Interface

Assembler, PL/I, C, REXX, COBOL, FORTRAN
Any language that runs under ISPF

You might also need a panel display application, depending on the type of
application you write.

For a list of books that provide information about QMF functions and

administration, see The QMF Tibrary” on page ul

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information.

© Copyright IBM Corp. 1983, 2002 vii

About This Book

Send your comments from the Web
Visit the Web site at:

http://www.ibm.com./gmf

The Web site has a feedback page that you can use to enter and send
comments.

Send your comments by e-mail
to comments@vnet.ibm.com. Be sure to include the name of the
product, the version number of the product, the name and part
number of the book (if applicable). If you are commenting on specific
text, please include the location of the text (for example, a chapter and
section title, a table number, a page number, or a help topic title).

Complete the readers’ comment form
at the back of the book and return it by mail, by fax (800-426-7773 for
the United States and Canada), or by giving it to an IBM
representative.

How to order QMF books

You can order QMF documentation either through an IBM representative or
by calling 1-800-879-2755 in the United States or any of its territories.

For a list of QMF books, see ‘The QMF Tibrary” on page u

viii QMF: Developing QMF Applications

Chapter 1. QMF Application Development Overview

You can use many of the functions of QMF in your own applications. For
example, you can write applications that:

* Run queries or procedures

* Export or import QMF objects

¢ Display or print reports or charts

* Enable the user to enter or change data in the database

You can also write applications that provide helpful functions to your users in
QME, such as a user-defined command that prints QMF reports at a remote

location, or a function key that automatically generates a chart of the weekly
sales results.

This chapter describes the two major types of QMF applications and the
application development tools QMF provides to help you implement your
application.

What Is application development in QMIF?

The word application can have many meanings. In QMF, an application can be
a procedure, a program, or an EXEC that lets you run QMF commands and
alter QMF objects using the Export and Import QMF commands.

Application development refers to the process of creating an application. It
includes:

* Understanding the problem that your application solves

* Designing the application

¢ Writing the code, associated messages, and help panels

Given these definitions, you can begin making the design decisions that affect

how your end users use your application and what QMF application tools
you use to enable your application to interact with QME.

How can the end users use your application?

You might want end users to interact primarily with your application, or you
might want them to use your application as a customized function in QME.

¢ If your application is intended for end users who are unfamiliar with QMF,
you probably want your end users to interact primarily with your
application. In fact, you might not want your end users to know that QMF

© Copyright IBM Corp. 1983, 2002 1

QMF Application Development Overview

is active. In this case, your application uses QMF services, but resides
outside of QMFE. Your program issues QMF commands only as needed.

* If your end users are familiar with QMF, you might want your end users to
see your application as an extension or customization of QMEF. In this case,
you need to set up your application to run within QME.

End users interacting primarily with the application

Suppose you write an application that uses QMF services. This application
provides the end user with a menu-driven interface, as shown in

4 J & H Supply Company h

Information System
Please select one of the following:
1. Print the monthly sales report
2. Create a new report
3. Modify information in the database

4. End the application

Figure 1. An example of an application-defined panel

When the user selects an option, the application issues the appropriate QMF
commands. If the user selects option 1, for example, the application runs a
QMF procedure that might run a query and print the resulting report.

In the preceding example, your application controls QMF. Your user interacts
only with your user interface and is not aware that QMF is active.

End users starting your application within a QMF session

Suppose you write an application that sends a QMF report from one user to
another.

You expect your users to run your application from within the QMF
environment, so you can assign the application a command synonym

2 QMEF: Developing QMF Applications

QMF Application Development Overview

(SEND_TO) that the end users can issue from the command line, or you can
assign the application to a function key instead, which automatically runs
your application.

After the user generates a report, the user can send this report to Smith by
entering SEND_TO SMITH on the QMF command line, as shown in

/REPORT LINE 1 POS 1 79 h
NAME DEPT JOB SALARY COMM
DANIELS 10 MGR 19260.25 -
JONES 10 MGR 21234.00 -
LU 10 MGR 20010.00 -
MOLINARE 10 MGR 22959.20 -
HANES 15 MGR 20659.80 -
KERMISCH 15 CLERK 12258.50 110.10
NGAN 15 CLERK 12508.20 206.60
ROTHMAN 15 SALES 16502.83 1152.00
JAMES 20 CLERK 13504.60 128.20
PERNAL 20 SALES 18171.25 612.45
SANDERS 20 MGR 18357.50 -
SNEIDER 20 CLERK 14252.75 126.50
ABRAHAMS 38 CLERK 12009.75 236.50
MARENGHI 38 MGR 17506.75 -
1=Help 2= 3=End 4=Print 5=Chart 6=Query
7=Backward 8=Forward 9=Form 10=Left 11=Right 12=
0K, here is your report.
COMMAND ===> SEND_TO SMITH

Figure 2. An example of a user entering a customized QMF command

What QMF application development tools are available?

Regardless of how your end users see your application, you can write
applications using any of the following application development tools:

* QMF procedures

* QMEF callable interface

* QMF command interface

* QMF externalized formats

* QMF command synonyms

* Other IBM products that bridge to QMF

Chapter 1. QMF Application Development Overview 3

QMF Application Development Overview

QMF procedures

QMF procedures are QMF objects that run within QMF and issue QMF
commands. QMF procedures can execute any QMF commands available at
your installation. QMF provides two types of procedures: linear procedures
and procedures with logic.

* Linear procedures contain only QMF commands and comments. You can use
linear procedures in all environments supported in QMF.

* Procedures with logic combine QMF commands with REXX logic to allow
you to create more powerful programs. You can use procedures with logic
in all environments supported in QME, except CICS. Procedures with logic
can contain QMF commands and any statement that is valid in a REXX
program.

For general information about writing linear procedures or procedures with
logic, see Using QMF For specific information about using QMF procedures to
write applications, see “1si ications”

Starting with Version 3.3, QMF provides a system initialization procedure that
allows you to run commands and set global variables before the user sees the
QMF home panel. For more information, see the version of Installing and
Managing QMF for your platform.

QMF callable and command interfaces

If you choose not to use QMF procedures, you need to decide whether your
program communicates with QMF through the callable interface or the
command interface.

Callable interface
The QMF callable interface is a Systems Application Architecture (SAA)

interface that you use to create an application that is invoked outside of QMF,
starts a QMEF session, and sends commands to QMF for execution.

The callable interface is available for all environments supported in QME. 1t is
the SAA Common Programming Interface for query in the VM, OS/390, and
VSE environments, and is available for various languages as shown in

Table 1. Callable interface support

CICS CICS CMS TSO APPC SRPI | Native
under | under 0S/390
0S/390 VSE batch
assembler ! X X X X X X X
C X X X X X X X
COBOL X X X X X X X

4 QMF: Developing QMF Applications

QMF Application Development Overview

Table 1. Callable interface support (continued)

CICS CICS CMS TSO APPC SRPI | Native
under | under 0S/390
0S/390 VSE batch
FORTRAN X X X X X
PL/1 X X X X X X X
REXX X X X X X

If you want to write SAA applications, you must use the callable interface in
one of the SAA languages that QMF supports.

For more information about the callable interface, see rhﬂp’mr 3, “The Callabld

[nterface” on page 19.

Command interface
The QMF command interface allows you to create applications that submit

commands to QMF from an ISPF dialog. QMF communicates with the ISPF
dialog through the ISPF variable pool using this command interface.

The command interface is only available when ISPF is available. The
command interface is not available in CICS.

For more information about the QMF command interface, s

s

”

em

Contrasting the callable and command interfaces
The differences between the callable interface and the command interface are:

Callable interface:

¢ Is available for all QMF-supported environments

* Does not require ISPF

* Does not require QMF to be started before you run your application
* Provides SAA Common Programming Interface for query

Command interface:

¢ Is available in all environments supported in QMF and ISPF
* Requires ISPF to be present and active

* Requires QMF to be started before the application is started

* Provides variables for communication between the ISPF application and
QMF

1. Assembler is not an SAA language.

Chapter 1. QMF Application Development Overview 5

QMF Application Development Overview

* Requires the programming language to be supported by ISPF

External formats for QMIF objects

Your application can export QMF objects to a file outside of the QMF product;
for example, you can export a form to a CMS file, a TSO data set, or a CICS
data queue. Each object has a particular format that your application can edit
and transfer to another system, or import into QMF.

For more information about the externalized formats of QMF objects, see
Command synonyms

QMEF allows you to specify command synonyms for programs or procedures
that you code. These command synonyms allow end users to use your
programs and procedures just as they would use any QMF command.

For more information about command synonyms, see ['sing_command
| ” zd.
Other IBM products that bridge to QMF

You can use the following IBM products with QMF to expand the function of
OME:

Application System (AS)
AS can issue QMF commands and define QMF queries. AS can then
use the results of the QMF queries as input to AS processes.

Data Extract (DXT)
QMF can invoke DXT"" End User Dialogs to allow the end user to
extract data from sources not directly supported by QMF.

ECF The Enhanced Connectivity Facility (ECF) allows a workstation user
to access host relational data. The workstation user uses ECF facilities
to send a request to the host to run a saved QMF query or procedure
and to download the retrieved data to the workstation.

GDDM
The Interactive Chart Utility (ICU), used by QMF to display charts, is
actually a feature of Graphical Data Display Manager (GDDM®).

ISPF Interactive System Product Facility allows the user to generate panels
that can interact with QMF via the command interface.

Lotus 1-2-3/M
The host version of Lotus® 1-2-3® can access QMF to perform
spreadsheet analysis on query results.

6 QMEF: Developing QMF Applications

Chapter 2. Using Procedures as Applications

You can write many applications entirely as procedures. You can create
procedures on your development system and either keep them for your
personal use or move them to your production system for public use.

If you are using QMF in the CICS environment, you can use QMF linear
procedures. If you are using QMF in the CMS, TSO, or native OS/390 batch
environments, you can also use REXX statements and functions in your QMF
procedures. REXX functions and procedures with logic are not available in the
QMF CICS environment.

This chapter focuses on information you need to know to use QMF
procedures to implement your application.

For information about how to create, build, and run a procedure, see Using
QMF.

Using ISPF services in a QMF procedure requires a few extra steps. For
information about running ISPF commands from a QMF procedure with logic

runnin§ under ISPF, see 'lsing ISPF commands from a pracedure with lagic’]

Knowing when not to use Procedures

If you are writing an application that operates on a procedure in QMF
temporary storage, you cannot write your application as a procedure. This is
because, when you run a procedure, that procedure becomes the current
procedure in QMF temporary storage.

For example, if you write your application as a procedure, and code your
application to save the current procedure in QMF temporary storage, the
application saves itself, because it is the current procedure in QMF temporary
storage when it is running.

Initial procedures

An initial procedure is a procedure that runs immediately after your QMF
session starts. Use the DSQSRUN parameter to specify the name of this
procedure. You can use DSQSRUN:

* With the DSQOMFE command, when QMEF is started interactively

© Copyright IBM Corp. 1983, 2002 7

Using Procedures as Applications

* With the QMF START command, when QMF is started through the callable
interface

QMF runs the initial procedure differently depending on the type of QMF
session used. For more information about how QMF uses the initial

procedure, see [Interactive session with an Initial Procedure (DSQSRUN)” onl

In TSO, and native OS/390 batch, applications can also set program
parameters using a REXX EXEC as described by the DSQSCMD parameter of
the QMF START command. Because QMF CICS does not support REXX, in
CICS you must specify all program parameters on the START command using
DSQSMODE=INTERACTIVE. The default mode from the callable interface is
BATCH.

Considerations for writing initial Procedures

* By default, QMF reruns the initial procedure whenever the user issues the
END command in an interactive session of QMF started by DSQQMEFE. The
DSQEC_RERUN_IPROC global variable specifies if the initial procedure is
rerun. The default value of this variable is 1 to rerun the procedure; 0
prevents the initial procedure from being rerun.

In callable interface programs, the initial procedure is never rerun, so this
global variable does not affect your callable interface programs.

* If you are writing initial procedures for use in an interactive QMF session,
you should avoid writing your initial procedure so that the current panel at
the end of the procedure is the Home panel. If the Home panel is the
current panel at the end of the initial procedure, QMF does not interactively
display a panel at the end of the procedure. If no severe errors occurred
and DSQEC_RERUN_IPROC is set to 1, QMF reruns the initial procedure
without interacting with the user. This results in an uninterruptible loop
that can appear as though QMF is not starting.

To avoid creating an uninterruptible loop, do one of the following;:

— Make sure that the current panel at the end of the procedure is not the
Home panel.

— Make sure that the procedure contains either a QMF EXIT or an
INTERACT command.

— Set DSQEC_RERUN_IPROC to zero (0).

* When you specify values for substitution variables in initial procedures, the
number of ampersands (&) you must use before the name of the variable
can vary depending on your environment. For example, you can specify
DSQSRUN as follows:

DSQSRUN=INITPROC (&VARL = value)

8 QMEF: Developing QMF Applications

Using Procedures as Applications

The number of ampersands you need to specify with VAR1 depends on if
QMF is running under CICS, CMS, TSO, or native OS/390 batch, if ISPF is
present, and if the program starting QMF is written in REXX.

Initial Procedures and Remote Unit of Work

The initial procedure must be stored at the system on which you start QMF
(the local system).

If you use the QMF CONNECT command from either your initial procedure
or the command line during an interactive session set up by an initial
procedure, you must reconnect to your original location before you can issue
an END command to reinvoke your initial procedure.

If you are still connected to the remote location, you receive an error.

Using QMF CONNECT within a procedure

The QMF CONNECT command lets you connect to another user ID or to a
remote DB2® database to use the remote unit of work support. You can use
this command within a linear procedure or a procedure with logic.

When you write procedures that use the QMF CONNECT command to access
remote databases, be aware of the following:

 If you are connected to a remote database and issue a RUN PROC
command, that procedure and all the objects used in that procedure must
be stored at the remote database.

* All QMF commands in the procedure are run in QMF temporary storage at
the system where QMF is running (the local system). However, all objects
used by these QMF commands (such as queries, procedures, or forms) must
be defined in the database at the current location (the remote system).

For more information about using the QMF CONNECT command and
remote unit of work support, see QMF Reference (for command syntax).

* All commands that affect the database (for example, SQL statements, QMF
queries, or EDIT TABLE updates) run at the current location.

¢ If the procedure contains system-specific commands (CICS, CMS, or TSO),
these commands run at the system where QMF is running (the local
system).
If your procedures contain system-specific commands that do not run on
the system where QMF runs, your procedure does not run successfully.

* Any files or data sets used in a system-specific command must exist on the
system where QMF is running (the local system).

Chapter 2. Using Procedures as Applications 9

Using Procedures as Applications

Substitution variables in procedures

You can use QMF substitution variables in linear procedures and procedures
with logic.

A substitution variable is any variable that you can use in a QMF command;
QMF manages these variables for you. A substitution variable is always
preceded by an ampersand (&). You can assign a value to a substitution
variable by setting global variables, by specifying values on the RUN
command, or by specifying values on the RUN command prompt panel. For
information on setting global variables, see L “

See Using QMF if you need to learn more about using ampersands with
substitution variables in QMF.

Specifying values on the RUN command
You can assign a value to a substitution variable using the RUN command:
* In your linear procedure:
RUN PROC SCHEDULE (&&TYPE='VACATION'
* In your procedure with logic:
"RUN PROC SCHEDULE (&&TYPE='VACATION'"

If you issue the QMF RUN command from within a PROC or QUERY panel,
you do not need to specify the PROC or QUERY object types. RUN assumes
these values when you invoke it from their respective panels.

The value of &TYPE is available only to the procedure called SCHEDULE.

In this example:

* The variable value VACATION is surrounded by single quotes because the
value is a character string.

* TYPE is preceded by double ampersands (&&) to indicate that the value is
being set on the RUN statement to be passed to the procedure named
SCHEDULE. If the RUN statement specifies &TYPE, the procedure
containing this statement prompts the user for the value.

This value for the substitution variable is active only within the procedure that
defines it. The value is not active in any procedure or module called from the
defining procedure.

Specifying values on the RUN command prompt panel

If you run a query or procedure that contains a substitution variable, and this
variable is not assigned a value by a global variable or on the RUN command,
QMF presents a RUN command prompt panel. You can specify the value for
the variable on this panel.

10 QME: Developing QMF Applications

Using Procedures as Applications

This value for the substitution variable is active only within the procedure that
defines it. The value is not active in any procedure or module called from the
defining procedure.

Prompting for variables in linear procedures
In a linear procedure, QMF scans the procedure for substitution variables and

resolves them before it processes any commands. The user is prompted for all
variables before the procedure runs.

Prompting for variables in procedures with logic
In a procedure with logic, the user is not prompted for variables until REXX

encounters the statement containing the variables. For example, if your
procedure with logic contains three statements that contain variables that
OQMF must prompt you for, QMF prompts you three times—once for each
statement.

If you want a procedure with logic to prompt you for all the necessary
variable values at one time, like the linear procedure does, use a dummy
procedure. Suppose you want to be prompted once for the substitution
variables LASTNAME and DEPT_NUM, which occur on two different lines in
your procedure with logic as shown in

/* This procedure runs two queries, displaying the report after each */
/* procedure has run. */

"RUN QUERY REG_QUERY (8BLASTNAME=8LASTNAME";
"INTERACT"
"RUN QUERY REG2_QUERY (8&DEPT_NUM=DEPT_NUM";

Figure 3. Procedure with logic with variables

Add the following line to the beginning of your procedure with logic,
immediately following the comment lines:

"RUN PROC PROMPT_ME (&LASTNAME, &DEPT_NUM";

where PROMPT_ME is a procedure with logic containing a comment line and
no instructions, as shown in [Ei

The completed procedure with logic looks like this:

Chapter 2. Using Procedures as Applications 11

Using Procedures as Applications

/* This proc is a dummy proc that provides prompting. */
/* This procedure runs two queries, displaying the report after each */
/* procedure has run */

"RUN PROC PROMPT ME (&LASTNAME, &DEPT_NUM";
"RUN QUERY REG_QUERY (8LASTNAME=8LASTNAME";
"INTERACT"

"RUN QUERY REG2_QUERY (8DEPT_NUM=&DEPT_NUM";

Figure 4. Procedure with logic that prompts for variables

Alternatively, you can use SET GLOBAL to prompt for all the values in your
procedure at the same time, as in the following:

"SET GLOBAL (LASTNAME=&LASTNAME,DEPTNUM=&DEPT_NUM";

Using REXX variables in procedures with logic

You can use REXX variables in a procedure with logic. The values for these
variables are known only within the procedure in which you defined them.
You can:

* Copy a REXX variable to a QMF variable with the SET GLOBAL command

* Copy a global variable to a REXX variable with the GET GLOBAL
command

* Use REXX variables in your REXX statements

For more information on REXX variables, see the REXX reference manual for
your system. For details on the GET GLOBAL and SET GLOBAL commands,
see QMF Reference.

QMF also provides a group of REXX variables for the SAA callable interface
that QMF sets after processing each QMF command. These variables provide
important information about the results of each command. You can use them
in your procedures with logic. For more information about these variables, see

”

Passing arguments to a procedure with logic

For procedures with logic, QMF provides an ARG option on the RUN PROC
command. This option lets you pass arguments, or values, to a procedure with
logic.

Use the ARG option when you are running a procedure that contains a REXX
PARSE ARG or ARG statement, as in the following example:

12 QME: Developing QMF Applications

Using Procedures as Applications

PROC WILDE.SHOW_ARGS MODIFIED LINE 1

/
/* This procedure shows you how to use the 'ARG=' option on the RUN */
/* PROC command. */
/ /
parse upper arg query name form_name

"RUN QUERY" query_name "(FORM="form_name

The RUN command for this procedure is:
RUN PROC SHOW_ARGS (ARG=(query name form_name)

Using the ARG option, you can also pass values between procedures.

Using REXX error-handling statements in procedures with logic

You can use REXX error handling techniques, such as the REXX SIGNAL
instruction, in a procedure with logic. In addition, you can use QMF
commands and variables with the REXX EXIT instruction to help clarify
nonzero return codes.

Branching to error-handling subroutines
The REXX signal on error instruction tells REXX to leave the current line and
branch to a label marked error when a nonzero return code is encountered.
This statement requires two parts:
 Signal on error

After every command, REXX puts the return code of the command in a
variable called rc.

If a command has a nonzero return code, REXX branches to the error label.

Signal on error returns errors from the QMF REXX procedure (ADDRESS
QRW) command environment, but not the REXX callable interface.

e Error label

The signal on error instruction requires that you provide a label that the
procedure can branch to if it encounters a nonzero return code. The label
precedes your error handling code. The return code is in the variable rc.
You can use this variable to branch to another subroutine, or you can use it
in your EXIT instruction, as in the following;:

/* error handling code for a procedure with logic */

error:
exit rc

Using messages with the REXX EXIT statement

As the previous section shows, you can use the REXX EXIT instruction to exit
a procedure with logic. QMF always issues a message when it finishes
running a procedure with logic. If you use the EXIT instruction, the message
you see depends on these factors:

Chapter 2. Using Procedures as Applications 13

Using Procedures as Applications

o If the last QMF command encountered an error
e If the return code was zero

[able 2 shows which message you see based on the given conditions.

Table 2. Messages returned from QMF

Nonzero return

code from the last Procedure return
OMF command code Message at completion of procedure
No 0 0K, your procedure was run.
The return code from your procedure
No nonzero was 8.
Yes 0 The error message provided by QMF.
Yes nonzero The error message provided by QMF.

An error message takes precedence over the return code message if you have
an incorrect QMF command and a nonzero return code.

If you want to show the error message from the last command and exit with a
QMF return code, use the MESSAGE command and the EXIT
DSQ_RETURN_CODE as in the following example:

"MESSAGE (TEXT='"dsq_message_text"'"
exit dsq_return_code

Figure 5. Showing the error message and return code

The variables dsq_message_text and dsq_return_code are QMF-provided
REXX variables. (For a complete listing of these varlables see @
language interface” on page 214.) You can use the MESSAGE command and
the dsq_message_text variable to store and display a message after further
processing has occurred, as in

14 QME: Developing QMF Applications

Using Procedures as Applications

/* Monthly report */
Signal on error

"DISPLAY TABLE JUNE_INFOQ"

"PRINT REPORT"

Exit(0);

Error: Original_msg = dsq_message_text
/* Saves error message. */

"RUN PROC GENERAL_RECOVERY"

/* This proc generates =/

/* new dsq_message_text. x/

"MESSAGE (TEXT='" Original msg "'"

/* Display original error msg. */

Exit dsq_return_code;

Figure 6. Storing and retrieving messages in a procedure

For more information on the MESSAGE command, see

Calling REXX programs from a procedure with logic

You might have procedures that call applications. When you call your REXX
callable interface application from a procedure with logic, be careful about the
number of ampersands (&) you specify for the substitution variables in your
application. This is especially true if the program being called contains a RUN
command with substitution variables, as in RUN QUERY WEEKLY Q (&&DEPT=58.

Calling REXX programs without substitution variables
If your REXX program does not contain an imbedded RUN command that
includes substitution variables, use one of the following commands to invoke
your program:
* The ADDRESS instruction
This instruction establishes a command environment. (For more information
on command environments, see Chapter 5_“ADDRESS QRW- Ilsing thd
i ” .) If your program is named
PANDA, and you want to call it from within the CMS environment, your
command is:
ADDRESS CMS "PANDA"
¢ The CALL instruction
This instruction invokes a program. For the program named PANDA, the
command is:
CALL PANDA
* A function

You also can call the program PANDA as a function, as in the following:
answer = PANDA()

Chapter 2. Using Procedures as Applications 15

Using Procedures as Applications

For more information on any of these commands, see the REXX reference
manual for your system.

You might consider removing the substitution variables from the RUN
command if you want to call your programs using one of the REXX
invocation calls. In that case, QMF prompts the user for the variables.

Calling REXX Programs that contain substitution variables

If your REXX application contains a QMF RUN command with a substitution
variable, you must invoke it using either CMS program_name or TS0
program_name.

Whether you are running a procedure with logic or a callable interface
program invoked by a procedure with logic, commands come into QMF the
same way. In this context, the callable interface program becomes a logical
extension of the procedure itself.

Consider the command:
RUN QUERY WEEKLY_Q (&DEPT=58

In a procedure with logic, use two ampersands on the substitution variable to
pass the variable to the query, as in the following:

"RUN QUERY WEEKLY_ Q (8&DEPT=58"

If a substitution variable has only one ampersand, QMF resolves the variable
for the procedure itself, and cannot pass the variable to the query.

If you call a REXX callable interface application from a procedure with logic,
and that application contains the command RUN QUERY WEEKLY_Q (&DEPT=58,
QMF resolves the variable just as it would for the calling procedure. Because
only one ampersand is used, the variable is not passed to the query.

To pass variables to QMF from a REXX callable interface application called by
a procedure with logic, you have three choices:

* Use the CMS or TSO command to call the application.

When you call the application, QMF does not process any substitution
variables it encounters. In the preceding command, &DEPT=58 is passed to
the query, where the substitution variable is resolved.

* Treat all substitution variables in your application as though you were
using them in a procedure with logic.

Add an ampersand to every substitution variable so the procedure with
logic does not resolve it.

* Use global variables.

16 QME: Developing QMF Applications

Using Procedures as Applications

You can define global variables at the start of your application and use
them throughout your QMF session.

Chapter 2. Using Procedures as Applications 17

Using Procedures as Applications

18 QME: Developing QMF Applications

Chapter 3. The Callable Interface

This chapter presents an overview of the QMF callable interface. For specific
information about the QMF callable interface for a particular language, see the
section in Appendix A, “Sample Code for Callable Interface Languages’] that
describes the callable interface for that language:

Assembler

7 : 7

C Language
COBOL
FORTRAN

FEORTRAN — T

PL/1 . i Z

REXX LIREXX language interface” on page 216

What is the Callable Interface?

Programming languages can use the QMF callable interface to run QMF
commands. All SAA Query commands are supported through the callable
interface. The QMF callable interface provides standard interfaces for different
programming languages, and provides common storage and access to
program variables.

When an application program needs to run a QMF command, it must first
issue a call to a QMF-supplied routine to start communication between the
program and QMEF. This call is made to the QMF-supplied interface routine.
QMEF supplies a routine for eac